[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 2076 GC-3 Your Roll No.....

Unique Paper Code : 32371301

Name of the Paper : Sampling Distribution

Name of the Course : B.Sc. (H) STATISTICS - CBCS

Semester : III

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on the receipt of this question paper.

2. Question No. 1 is compulsory.

3. Attempt Six questions in all by selecting at least two questions from each Section.

1. Attempt any five parts:

- (a) Define convergence in probability and convergence with probability one and state their relations.
- (b) Let X₁, X₂,...,X_n be a random sample of size n from a uniform population with p.d.f.

$$f(x) = \begin{cases} 1, & \text{if } 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Obtain the pdf of X_(r).

- (c) Discuss null hypothesis, critical region and level of significance with examples.
- (d) If $X \sim \chi_n^2$; then prove that $\frac{X-n}{\sqrt{2n}}$ is a N(0,1) variate for large n.

- (e) If the variable t has Student's distribution with 2 degrees of freedom, then find $P(-\sqrt{2} \le t \le \sqrt{2})$.
- (f) Let X_1 and X_2 be independent random variables with density law $f(x) = e^{-x}$, $x \ge 0$, then show that $Z = X_1/X_2$ has F-distribution.
- (g) If $X \sim U[0,1]$, then show that $-2 \log X \sim \chi_2^2$. (5×3)

Section A

(a) Let g(x) be a non-negative function of a r.v. X. Then show that for every k>0, we have

$$P(g(x) \ge k) \le E(g(x))/k$$
.

Hence, obtain Chebychev's inequality. Use it to prove that in 2000 throws of a coin the probability that the number of heads lies between 900 and 1100 is at least 19/20.

- (b) Let $X_1, X_2,...,X_n$ be iid random variables and $S_n = X_1 + X_2 + ... + X_n$. Obtain the limiting distribution of S_n when n tends to ∞ . (6,6)
- 3. (a) Let $\{X_n\}$ be a sequence of mutually independent random variables such that $X_n = \pm 1$ with probability $\frac{1-2^{-n}}{2}$ and $X_n = \pm 2^{-n}$ with probability 2^{-n-1} . Examine whether the weak law of large numbers can be applied to the sequence $\{X_n\}$.
 - (b) Show that in odd samples of size n from U[0, 1] population, the mean and variance of the distribution of median are ½ and 1/[4(n+2)] respectively.
 - (a) Discuss the test of significance for the difference of two means for large sample sizes. Also obtain the confidence interval for it.

2076

3

(b) Explain the term 'standard error and sampling distribution'. Show that in a series of n independent Bernoulli trials with constant probability of success P, the standard error of the proportion of success

is
$$\sqrt{\frac{PQ}{n}}$$
, where $Q = 1-P$. (6,6)

Section B

5. (a) If $X_1, X_2,...,X_n$ are independent random variables with continuous distribution functions $F_1, F_2,..., F_n$ respectively, then show that

$$-2\log [F_1(x_1)F_2(x_2)...F_n(x_n)] \sim \chi_{2n}^2$$
.

(b) Le
$$P_x = \frac{1}{2^{n/2}\Gamma(n/2)} \int_0^x w^{\frac{n-2}{2}} e^{-w} dw$$
, $x > 0$. Show that $x < \frac{n}{1 - P_x}$.

(c) For the t- distribution with n d.f., prove that

$$\mu_{2r} = \frac{n(2r-1)}{(n-2r)}\mu_{2r-2}, n > 2r.$$
 (4,4,4)

- 6. (a) Prove that ns^2/σ^2 is distributed as chi-square with (n-1) d.f. where s^2 and σ^2 are the variances of sample (of size n) and the population respectively.
 - (b) Define F-distribution. For F-distribution with n_1 , n_2 d.f. show that the mean is independent of n_1 and mode lies between 0 and 1. (6,6)
- 7. (a) If $X \sim_{Fm,n}$ then show that $U = \frac{mX}{n + mX} \sim \beta_1 \left(\frac{m}{2}, \frac{n}{2}\right)$.

(b) If \bar{X} and S^2 be the usual sample mean and sample variance based on a random sample of n observations from $N(\mu,\,\sigma^2)$ and if $T=\frac{\bar{X}-\mu}{S/\sqrt{n}}$, then prove that

$$Cov(\bar{X},T) = \frac{\sigma\sqrt{n-1}\Gamma(n-2)/2}{\sqrt{2n}\Gamma(n-1)/2}, \quad S^2 = (n-1)^{-1}\sum_{i=1}^{n}(X_i - \bar{X})^2$$
(6,6)

- (a) What is a contingency table? Describe how the χ² distribution may be used to test whether the two attributes are independent.
 - (b) Let $x_1, x_2, ..., x_n$ be independent observations from the normal universe with mean μ and variance σ^2 and let \overline{x} and s^2 be the sample mean and sum of the squares of the deviations from the mean respectively. Let x' be one more observation independent of previous ones. Obtain the distribution of

$$U = \frac{x' - \overline{x}}{s} \sqrt{\frac{n(n-1)}{n+1}} .$$

(c) Prove that if $X \sim F_{m,n}$ and $Y \sim F_{n,m}$, then for every a > 0, $P(X \le a) + P(Y \le 1/a) = 1$.